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ABSTRACT. Let R be a ring with involution 1. Notation V[¢1,{s] is
called skew-Lie product and defined by ¢1¢2 — ¢21(¢1). The main ob-
jective of this paper is to investigate commutativity of n-prime rings
with involution 7 of the second kind equipped with skew-Lie product
involving a generalized derivation. Finally, we furnish some examples
which illustrate that the requirements presumed in our results are not
redundant.

2000 MATHEMATICS SUBJECT CLASSIFICATION. 16N60, 16W25.

KEYWORDS AND PHRASES. 7n-Prime ring, derivation, involution, gener-
alized derivation, skew Lie product.

1. INTRODUCTION

Throughout the paper, R will be used to describe an associative ring, and ¥4
is the centre of R. For any {1, s € R, symbols [{1,ly] = 109 — £l is called
Lie product (resp. commutator) and €1 o fo = ¢1€y + £2¢1 is called Jordan
product (resp. anti-commutator). R is called 2-torsion free if 2¢; = 0 im-
plies /1 = 0 for all £; € R. Recalling the definition of an involution on a ring
R. An additive mapping 7 on a ring is called involution if n(ab) = n(b)n(a)
and n?(a) = a, for all a,b € R. A ring R is said to be prime if aRb = (0)
(where a,b € R) implies either a = 0 or b = 0. Ultimately, an involution is
an anti-automorphism of order 1 or 2, a ring with involution 7 is called a 7-
ring. Prime rings with involution 7 is called n-prime if aRb = a9n(b) = (0)
or n(a)Rb = aMRb = (0) implies a = 0,b = 0V a,b € R. Every prime ring
with involution 7 is a n-prime ring but the converse is not true in general;
for example, let R be a prime ring and S = R x R°, where $R° is an opposite
ring of R. The mapping 1 on S as n(f1,f2) = (¢2,¢1). Then it is easy to
check that S with involution 7 is n-prime ring but S is not a prime ring.
We describe an element ¢; in R is said to be hermitian if n(¢;) = ¢; and
skew-hermitian if 7(¢;) = —¢;. Let Oy be the set of hermitian elements
and ¥g is a set of skew-hermitian elements of PR. Let R be a ring with
char(R) # 2, we have for every element ¢; € R can be uniquely expressed
as 201 = h+ k where h € 9y and k € ¥g. An involution 7 is called the
first kind if ¥, C ¥y, otherwise, it is of the second kind. The second kind
implies ¥g Nz # (0) and ¢y Nz # (0).

A mapping ¢ on R is called a derivation if ¥(¢1 + £o) = 1 ({1) + ¥ (l2)
and ©¥(l1le) = Y€1)l + £13p(€2) for all £1,42 € R, for any fixed element
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b € R, a mapping ¥ on R defined by ¥(¢1) = [b,¢1] = bl — £1b for all
{1 € R is called a inner derivation induced by b. An additive mapping D
: R — R is called a generalized derivation on fR if there exists a deriva-
tion ¥ on R such that D(¢16s) = D(l1)ls + £11)(Ls) for all 41,05 € R. A
map f : ®| — R is called centralizing on R if [f(¢1),¢1] € ¥z holds for
all £1 € R. In particular, if [f(¢1),¢1] = 0 holds for all 1 € R, then it is
called commuting. The history of centralizing and commuting maps began
in 1955, when Divinsky established that a simple Artinian ring is commu-
tative if it has a commuting non-trivial automorphisms. Motivated by the
representation of a centralizing map, a map f from R into itself is called n-
centralizing if [f(¢1),n(¢1)] € Uz for all £; € R’ and is called n-commuting if
[f(¢1),n(¢1)] = 0 for all £; € R. Several years later, Posner [17], the presence
of a nonzero centralizing derivation on a prime ring guarantees ring commu-
tativity. The study of centralizing (resp. commuting) derivations and vari-
ous generalizations of the idea of a centralizing (resp. commuting) map are
the key topics that emerge immediately from Posner’s result, with numer-
ous applications in diverse fields. The commutativity theorem for prime and
semi-prime rings with or without involution was recently proved by a num-
ber of algebraists, who accepted identities on automorphism, derivations, left
centralizers, and generalized derivations, for example, see [2, 4, 7, 11, 12, 13].

In 2016, Ali et al. [2] examine a 7-centralizing derivation in prime rings
with involution and showed the 7-version of standard results of Posner [17],
and they proved that “If R be a prime ring with involution 7 such that
char(R) # 2. If ¢ is a nonzero derivation of R such that [¢)(¢1),n(61)] € 9z
for all 41 € 9% and ¢ (I9g NIz) # {0}, then R is commutative”. Further,
this result was extended by Nejjar et al. [14] for the second kind invo-
lution instead of condition ¥ (¥s N ¥z) # {0}. Recently, Alahmadi et al.
[4] generalized the above result for generalized derivation and they proved
that “If R is a prime ring with involution 7 of the second kind such that
char(R) # 2 and if R admits a nonzero generalized derivation F' associated
with a derivation d such that [F(t),n(t)] € Jz for all t € R, then R is
commutative”. In this direction a lots of work have been done in the re-
cent years (see for reference [5, 6, 18] where further references can be found).

Our paper’s the main goal is to look into a generalized derivations in-
volving skew Lie product on n-prime rings with involution. Further, we
identify the structure of n-prime rings that satisfy some identities. In fact
our results are generalization of some results proved in [3] where authors
proved their main result as: “If R is a 2-torsion free prime ring with in-
volution * of second kind and admits a generalized derivation (§,d) such
that Viz,§(z*)] £ V[z,2*] € Z(R) for all z € R, then R is commutative or
§ = £1n, where Iy is the identity mapping on R”. At the last we provide
some examples to demonstrate that the conditions assumed in our results
are not unnecessary.
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2. MAIN RESULTS

Lemma 2.1. Let R be a n-prime ring with involution n. If az € ¥z and
an(z) € 9z ehere a € R and z € ¥z, then a € ¥z or z = 0.

Proof. Since, az € 9z and an(z) € ¥z, 0 = [az,r] = [an(z),r] for all r € R,
implies 0 = z[a, r] = n(z)[a,r]. Further implies (0) = zR[a, r] = n(z)R[a, 7],
by the definition of n-prime ring, we have either z = 0 or a € ¥ 5. O

Lemma 2.2. Let R be a n-prime ring with involution n. If az € 97 and
n(a)z € ¥z for any a € R and z € 9z, then a € ¥z or z = 0.

Proof. Since, az € ¥z and n(a)z € ¥z, 0 = [az,r] = [n(a)z,r] for all r € R,
implies 0 = z[a,r] = z[n(a),r] implies (0) = zMR[a, r] = zR[n(a),r]. Further
implies (0) = zR][a,r] = 298n([a,r]), by the definition of n-prime ring, we
have either 2 =0 or a € V. O

Lemma 2.3. [9, Lemma 2.3], Let R be a n-prime ring of char(R) # 2.
Then R is 2-torsion free.

Although it is commonly known that the zero-divisor cannot exist in the
centre of a prime ring, but the center of n-prime rings is not devoid of the
zero-divisor. The following example demonstrates the aforementioned fact.

Example 2.4. Consider R = {[ 061 o? ] ‘al,ag € Z}, define n in such
2
ar 0 a0 . _ , ,
a way n ([ 0 as ]) = [ 0 a ] It is easy to verify that R is n-prime

€ 9z, and for any

) e . 0
ring with involution n. For any non-zero oy, 061

0
0 0 a; 0 0O 0| |00
non—zemag,[o QQ}E%and[O 0}[0 Oé2:|_|:0 0].

Lemma 2.5. [9, Lemma 2.4], In n-prime ring, 97 N9y and 9z N Jg are
free from zero-divisors.

Lemma 2.6. Let R be a 2-torsion free n-prime ring with involution n which
is of the second kind. Let ¢ be a derivation on R. If ¥(h) = 0 for all
h € 9g Nz, then P(z) =0 for all z € V5.

Proof. By our hypothesis, we have ¥(h) = 0, where h € 9y N Iz, then
Y(k?) = 0 for k € ¥g Nz implies k (k) = 0 by Lemma 2.5 we have
either £ = 0 or ¢(k) = 0; the first case is not possible because n is of
the second kind involution. So, we have (k) = 0 for k € 9g NVJz. For
all z € ¥z we have for 2-torsion free rings 2z = h + k. Finally, we have

¥(2z) = ¥(h) + (k) = 0 implies ¥(z) = 0 for all z € ¥. O

Fact 2.7. Let R be a 2-torsion free n-prime ring with involution n which is of
the second kind. If V[l1,n(¢1)] € 9z for all {1 € R, then R is commutative.

Proof. By the given condition

(1) V [l1,n(6)] € ¥z for all £, € R.
Linearizing the above equation, we have

(2) V [l1,m(€2)] + V [l2,n(¢1)] € ¥z for all £, € R.



386

Md. Arshad Mmadni, Mohd Shadab Khan and Muzibur Rahman Mozumder

Taking /ok in place of {9, where k € ¥z N1¥g in the above relation and using
Lemma 2.5, we obtain

(3)  (=V [l1,n(l2)] + lan(tr) + n(l1)n(l2)) k € Iz for all £1,45 € R.
The last relation further implies
(4)  [-V [l1,n()] + lan(ly) + n(€1)n(Lls), r] k=0 for all £1,l9,r € R.

By Lemma 2.5, we get k = 0 or [—V [¢1,7(¢2)] + lan(41) + n(€1)n(l2),7] =0
for all £1, ¢, r € R. The first case is not possible because 7 is of the second
kind involution. The later case implies

(5) (—V [61,77(52)] + lgﬁ(ﬁl) + 77(61)77(22)) € 9y for all {1,405 € K.
By using (2) and (5), we have

(6) 209m(€1) € 9z for all 41,45 € R.

Since R is 2-torsion free, we get

(7) lon(ly) € V7.

Replacing n(¢1) by ¢1 and ¢2 by k, where 0 # k € ¥z N dg, we have

(8) lk € 9z and lin(k) € 95 for all ¢4 € R.

By Lemma 2.1, we have

9) {1 € 9z for all 1 € R.

The last relation implies commutativity of fR. O

Fact 2.8. [9, Fact 2.2], Let R be a 2-torsion free n-prime rings with invo-
lution m which is of the second kind. If n is centralizing, then R is commu-
tative.

Fact 2.9. [9, Fact 2.3], Let R be a 2-torsion free n-prime ring with involution
n which is of the second kind. If {1 on(f1) € 9z for all £, € R, then R is
commutative.

Fact 2.10. Let R be a 2-torsion free n-prime ring with involution n which
is of the second kind and D be a generalized derivation associated with a
derivation ¢ on R. If D(£1) € ¥z for all {1 € R, then either R is commu-
tative or D = 0.

Proof. By the given condition

(10) D(¢1) € ¥y for all 41 € R.
Let us consider ¥z # 0. Taking ¢2¢;1 in place of ¢;
(11) D(l381) € 9z for all 1,05 € R.
Commutes the above relation with ¢;, we obtain

(12) [290(£1),61] = 0O for all 41,45 € R.
Replacing 5 by (0 # z) € ¥z, we obtain

(13) z[Y(£1),41] = 0 for all 41 € R.

From the last relation, we have
(14) 2ZR[Y(41), 1] = (0) = n(2)R[Y(41), £1] for all £; € R.
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By the definition of n-prime ring, we have either z = 0 or [¢)(¢1), 6] = 0,
the first case is not possible by our assumption, the later case implies

(15) [(£1),01] = O for all 1 € R.

By [15, Theorem 1], R is commutative or ¢ = 0. Replacing ¢; by ¢;u, where
u € R in (10) and using ¥ = 0, we obtain

(16) D(l1)u € ¥z for all £1,u € R.
The last relation further gives
(17) D(l)n(u) € ¥z for all £1,u € R.

The last relation together with (16) and using Lemma 2.2, we obtain
(18) either D(¢1) =0 for all ¢1 € R, or u € ¥y for all u € R.

The later case implies commutativity of SR and the first case implies D =
0. d

Theorem 2.11. Let R be a 2-torsion free n-prime ring with involution n
which is of the second kind and D be a generalized derivation associated
with a derivation ¥ on R satisfying V[l1, D(n(¢1))] £ V[l1,n(f1)] € 9z for
all {1 € R then R is commutative or D = +1sp, where Iy is the identity
mapping on R.

Proof. Given that
(19) V[, D(n(£1))] + V[l1,n(¢1)] € ¥z for all £1 € R.

If D = 0, then V[¢1,n(¢1)] € 9z for all {1 € R, so by Fact 2.7, R is
commutative. Now, for the case D # 0, replacing ¢1 by ¢; + ¢5 in (19), we
have

(20) Vb1, D(n(2))] + Vb2, D(n(£1))] + V[l1,n(¢2)] + Vb2, n(t1)] € V2.
For all ¢1, {5 € R, the last relation further implies

6D (n(l2)) = D(n(L2)n(€1)) + €2D(n(l1)) — D(n(fr)n(l2)) + €in(Ls)
(21)  —nll)n(ly) + Lan(f1) — n(l1)n(ly) € ¥z for all £, 4y € R.
Replacing ¢; by ¢1h, where h € 97 N ¥z in the above relation and using it,

we obtain

(22) (ban(t1) — n(£r)n(l2))Y(h) € Iz for all &y, Ly € R.
Replacing ¢1 by n(¢1) in the last relation, we get

(23) n(lan(fr) —n(€)n(l2))(h) € Uz for all £1, 4 € R.

Combining (22), (23) and using Lemma 2.1, we obtain (¢an(€1)—n(¢1)n(f2)) €
¥z for all £1,05 € R or Y(h) = 0 for all h € ¥y NY¥z. The first case im-
plies commutativity of R by Fact 2.7. The later case by Lemma 2.6 implies
¥(z) =0 for all z € 9. Replacing ¢; by ¢1s in (21), where s € 9g NIz, we
obtain and using ¢(z) = 0 for all z € ¥

(€1D(n(l2)) + D(n(€2))n(l1) — L2D(n(€1)) + D(n(1))l2 + Lin(la)+
(24)  n(l2)n(£r) — Lan(ly) +n(l1)n(f2))s € V7 for all £1, 05 € R.
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By using Lemma 2.5, we obtain
(t2D(n(2)) + D(n(l2))n(tr) = L2D(n(t1)) + D(n(l1))l2 + 1n(l2)+
(25)  n(l2)n(lr) = Lan(lr) + n(l1)n(ls)) € Uz for all 1,05 € R.
The last relation together with (21), we obtain
(26) 01D (n(ls)) + €1n(le) € ¥y for all £, 4y € R.

Replacing ¢1 by h and ¢2 by n(¢2) where h € ¢ N¥z and using Lemma 2.5,
we obtain

(27) D(l3) + €y € ¥z for all £y € R.
The last relation further gives
(28) (D + In)(¢2) € ¥z for all £5 € R.

Here, Iy represent the identity mapping on R and D + I is a generalized
derivation associated with a derivation 1, by Fact 2.10, we have either R is
commutative or D = —Ix. When we take V[¢1, D(n(¢1))]—V[l1,n(l1)] € 9z
for all #; € R, then by same process we obtain the required result. O

Corollary 2.12. [3, Theorem 4], Let R be a 2-torsion free prime ring with
inwvolution m which is of the second kind and D be a generalized derivation
associated with a derivation 1 on R satisfying V[€1, D(n(£1))]|£V[€1,n(41)] €
Pz for all 61 € R then R is commutative or D = *+Iyx, where Iy is the
identity mapping on R.

Theorem 2.13. Let R be a 2-torsion free n-prime ring with involution n
which is of the second kind and D be a generalized derivation associated
with a derivation ¢ on R satisfying V[l1, D(¢1)] + V[1,n(l1)] € 9z for all
01 € R, then R is commutative.

Proof. Given that

(29) V[Zl, D(gl)] + V[Zl,n(fﬂ] € 9y for all ¢1 € R.

The last relation further implies that

(30) £1D(61) — D(ﬁl)n(gﬂ + 51?7(61) — 77(£1)2 € ¥z for all £1 € fR.

Replacing ¢1 by ¢1h in the above relation and using it, where h € 9y NV,
we obtain

(31) (02 — £1m(€1))2b(h) € 97 for all £1 € R.

Replacing ¢ by f1s in the above relation, where s € ¥g N Yz and using
Lemma 2.1, we obtain

(32) (02 4 L1m(£1))1b(h) € 97 for all 41 € R.
Combining (32) and (31), we have

(33) 0n(l)w(h) € ¥z for all £ € R.
The last relation further implies

(34) n(€in(€1))w(h) € 9z for all £; € R.

The last relation together with (33) and by Lemma 2.2, we obtain either
lin(ty) € 9z or ¥(h) = 0, the first case further implies 1 on(¢1) € ¥z, so by
Fact 2.9, R is commutative. The later case implies 1)(z) = 0 for all z € J.
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Replacing ¢1 by ¢1s in (30), where s € ¥g N ¥z and using Lemma 2.1, we
obtain

(35) 6D(6y) + D(01)n(ly) — ban(ly) —n(t1)? € 97 for all £, € R.
Combining (30) and (35), we obtain

(36) 0D(y) —n(6)? € 97 for all £, € R.

Replacing ¢; by ¢; + ¢, in the above equation we obtain

(37) 61D(€2) + L2D(41) — n(€1)n(Le) — n(la)n(€1) € ¥z for all €1, £y € R.

Replacing ¢; by ¢1s, in the above equation, where 0 # s € ¥ N¥g and using
(%) =0 for all z € ¥z, we obtain

(38) (L1D(la) + L2D(L1) +n(l1)n(L2) +n(l2)n(tr))s € ¥z for all £1, Ly € R.
By Lemma 2.5, we obtain

(39) 61D(€2) + L2D(41) + n(l1)n(le) +n(l2)n(€y) € 9z for all £, £y € R.
Combining (39) and (37), we obtain

(40) n(él)n(ég) + 77(52)77([1) € 9y for all £1,49 € R.
In particular, we obtain ¢1 o n(fq) € ¥z for all 1 € ¥z, so by Fact 2.9, R is
commutative. O

Corollary 2.14. [3, Theorem 5], Let R be a 2-torsion free prime ring with
inwvolution n which is of the second kind and D be a generalized derivation
associated with a derivation v on R satisfying V[l1, D(¢1)] + V[l1,n(¢1)] €
¥z for all 1 € R, then R is commutative.

Theorem 2.15. Let R be a 2-torsion free n-prime ring with involution n
which is of the second kind and D be a generalized derivation associated with
a derwation ¢ on R satisfying V[l1, D(€1)] + [€1,m(¢1)] € Uz for all £1 € R,
then R is commutative.

Proof. Given that
(41) V[t1,D(£1)] + [1,1n(£1)] € ¥z for all {1 € R.
Replacing #; by ¢; + {5, in the above relation, we obtain
(42) Vb, D(€2)] + Vb2, D(1)] + [, n(£2)] + [l2,1(41)] € V.
For all ¢1, 05 € R, the last relation further implies

06D(l2) — D(€2)n(ly) + £2D(41) — D(€1)n(l2) + lin(£2)
(43) + lan(br) — n(l1)le — n(le)ly € Iz for all 41,45 € R.
Replacing ¢1 by ¢1h in (43) and using it, where 0 # h € 9y NIz, we obtain
(44) (ol — L1n(L2))(h) € ¥z for all 44,4y € R.
Replacing ¢ by n(¢1), in Equation (44), we get
(45) n(lely — lan(€2))p(h) € ¥z for all £, 45 € R.

Combining (44) and (45) and then using Lemma 2.2, we obtain either of; —
() € 9z or (h) =0 for all 0 # h € 9y NJz. The first case implies
Vit1,m(61)] € 9z, so by Fact 2.7, R is commutative, the later case implies
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¥(z) = 0 for all z € ¥z, replacing ¢1 by ¢1s in (43), where 0 # s € 9g NIz
and using Lemma 2.5, we obtain
06D(l2) + D(€2)n(ly) + £2D(41) — D(€1)n(l2) + in(£2)
(46) —Lon(l1) + n(l1)ls — n(la)ly € 9z for all £, ls € R.
Combining (43) and (46), we obtain
(47) D(la)n(ly) — lan(ly) +n(€1)ly € ¥z for all £, 45 € R.
Replacing ¢1 by h in the last equation where 0 # h € ¥ N ¥z, we obtain
(48) D(la)h € ¥z for all £y € R.
By Lemma 2.5, we obtain
(49) D(¥s) € ¥y for all £y € R.

By Fact 2.10, we have either R is commutative or D = 0, the later case
from (41), we obtain [¢1,n(¢1)] € ¥z for all {1 € R, so by Fact 2.8, R is
commutative. ]

Corollary 2.16. [3, Theorem 6], Let R be a 2-torsion free prime ring with
inwvolution m which is of the second kind and D be a generalized derivation
associated with a derivation ¥ on R, if V[l1, D(1)] + [¢1,n(¢1)] € 9z for all
l1 € R, then R is commutative.

Theorem 2.17. Let R be a 2-torsion free n-prime ring with involution n
which is of the second kind and D be a generalized derivation associated with
a derwation ¢ on R, if V[, D(n(ly))]| £ l1on(lr) € Iz for all {1 € R, then

R is commutative.
Proof. Given that
(50) V[fl,D(n(fl))] + /410 77(51) € ¥z for all ¢ € R.

If D = 0, then fR is commutative by Fact 2.9. If D # 0, then by linearization
of the last relation implies

V{1, D(n(£2))] + V[lz, D(n(£1))] + €1 0 n(L2)
(51) + {490 77(61) € 9y for all 61,£2 € R.
The last relation further implies
6.D(n(2)) — D(n(£2))n(f1) + £2D(n(£1)) — D(n(€1))n(f2)
(52) + /{10 77([2) + 450 ’l](fl) € ¥y for all 41,45 € R.
Replacing ¢; by ¢1h in (52) and using it, where 0 # h € ¥ Nz, we obtain
(53) {6277@1) - U(fl)n(fg)}w(h) S 192 for all [1,(2 € R.

Now, the above relation is same as in (22), we get %R is commutative or
¥(z) =0 for all z € ¥z. The later case implies, replacing ¢; by ¢1s in (52),
where 0 # s € ¥g N ¥z, we obtain

{61D(n(¢2)) + D(n(£2))m(r) — L2D(n(¢1)) + D(n(tr))n(L2)
(54) + 01 0n(ly) — Ly on(l1)}s € ¥y for all 41,45 € R.
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By using Lemma 2.5, we obtain

01D (n(l2)) + D(n(l2))n(€1) — €2D(n(l1)) + D(n(f1))n(f2)
(55) + /410 77(€2) — /{90 ’l](@l) € ¥y for all El,gg € R

The last relation together with (52), implies
(56) €1D(17(€2)) + 5117(52) + T](£2)€1 € ¥y for all 41,45 € R.

Replacing ¢1 by h and 5 by n(¢3) in the above relation where 0 # h €
Y N ¥z, we obtain

(57) D(f3) + 203 € 97 for all £ € R.

The last relation further implies

(58) (D + 2Ix)(€2) € ¥y for all £y € R.

By Fact 2.10, we have either R is commutative or D = —21gy the later case
together with (50), we obtain

(59) Vi1, —2n(¢1)] + €1 o n(fy) € 9z for all 41 € R.

The last relation further implies

(60) 2(n(01)? — [£1,m(f1)] € 97 for all £1 € R.

Replacing ¢ by ¢1s in the above relation where 0 # s € ¥g N Yz, we obtain
(61) 2(n(01)2 + [£1,1(01)])s* € V7 for all £ € R.

By Lemma 2.5, we obtain

(62) 2(n(£1)* + [£1,1(£1)]) € Iz for all £1 € R.

Combining (62) and (60), we obtain [¢1,1(¢1)] € 9z for all #1 € R, Fact 2.8,
implies commutativity of R. Now, we have V[¢1, D(n(¢1))] —¢10n(¢1) € 9z
for all #; € %R, so by the same process R is commutative. O

Corollary 2.18. [3, Theorem 7], Let R be a 2-torsion free prime ring with
inwvolution m which is of the second kind and D be a generalized derivation
associated with a derivation v on R, if V[l1, D(n(¢1))] £ 41 0n(ly) € Iz for
all 01 € R, then R is commutative.

The following example shows that the second kind is necessary in Theo-
rems 2.15 and 2.17.

a1 a2

Example 2.19. Consider R = { [
a3 Oy

:| ‘O{l,()é27043,0[4 € Z}7 deﬁne n

mn such a way n <[ Z; gi }) = [ 523 _Of? } It is easy to verify that

R is p-prime ring with involution n which is of the first kind. Moreover, we
define a generalized derivation D and a derivation 1 as D ({ o1 a2 }) =

a3z Oy
[ o? _8@ and i = D, here D is a generalized derivation associated with
3

a derivation v satisfy the condition of Theorem 2.15 and 2.17, however R
18 non-commutative.
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