CERTAIN DIFFERENTIAL IDENTITIES INVOLVING SKEW LIE PRODUCT AND GENERALIZED DERIVATIONS

MD. ARSHAD MADNI, MOHD SHADAB KHAN, AND MUZIBUR RAHMAN MOZUMDER

ABSTRACT. Let \mathfrak{R} be a ring with involution η . Notation $\nabla[\ell_1,\ell_2]$ is called skew-Lie product and defined by $\ell_1\ell_2-\ell_2\eta(\ell_1)$. The main objective of this paper is to investigate commutativity of η -prime rings with involution η of the second kind equipped with skew-Lie product involving a generalized derivation. Finally, we furnish some examples which illustrate that the requirements presumed in our results are not redundant.

2000 Mathematics Subject Classification. 16N60, 16W25.

KEYWORDS AND PHRASES. η -Prime ring, derivation, involution, generalized derivation, skew Lie product.

1. INTRODUCTION

Throughout the paper, \Re will be used to describe an associative ring, and ϑ_Z is the centre of \Re . For any $\ell_1, \ell_2 \in \Re$, symbols $[\ell_1, \ell_2] = \ell_1 \ell_2 - \ell_2 \ell_1$ is called Lie product (resp. commutator) and $\ell_1 \circ \ell_2 = \ell_1 \ell_2 + \ell_2 \ell_1$ is called Jordan product (resp. anti-commutator). \Re is called 2-torsion free if $2\ell_1=0$ implies $\ell_1 = 0$ for all $\ell_1 \in \mathfrak{R}$. Recalling the definition of an involution on a ring \mathfrak{R} . An additive mapping η on a ring is called involution if $\eta(ab) = \eta(b)\eta(a)$ and $\eta^2(a) = a$, for all $a, b \in \Re$. A ring R is said to be prime if aRb = (0)(where $a, b \in R$) implies either a = 0 or b = 0. Ultimately, an involution is an anti-automorphism of order 1 or 2, a ring with involution η is called a η ring. Prime rings with involution η is called η -prime if $a\Re b = a\Re \eta(b) = (0)$ or $\eta(a)\Re b = a\Re b = (0)$ implies $a = 0, b = 0 \ \forall \ a, b \in \Re$. Every prime ring with involution η is a η -prime ring but the converse is not true in general; for example, let \mathfrak{R} be a prime ring and $S = \mathfrak{R} \times \mathfrak{R}^o$, where \mathfrak{R}^o is an opposite ring of \Re . The mapping η on S as $\eta(\ell_1,\ell_2) = (\ell_2,\ell_1)$. Then it is easy to check that S with involution η is η -prime ring but S is not a prime ring. We describe an element ℓ_1 in \mathfrak{R} is said to be hermitian if $\eta(\ell_1) = \ell_1$ and skew-hermitian if $\eta(\ell_1) = -\ell_1$. Let ϑ_H be the set of hermitian elements and ϑ_S is a set of skew-hermitian elements of \Re . Let \Re be a ring with $\operatorname{char}(\mathfrak{R}) \neq 2$, we have for every element $\ell_1 \in \mathfrak{R}$ can be uniquely expressed as $2\ell_1 = h + k$ where $h \in \theta_H$ and $k \in \theta_S$. An involution η is called the first kind if $\vartheta_Z \subseteq \vartheta_H$, otherwise, it is of the second kind. The second kind implies $\vartheta_S \cap \vartheta_Z \neq (0)$ and $\vartheta_H \cap \vartheta_Z \neq (0)$.

A mapping ψ on \Re is called a derivation if $\psi(\ell_1 + \ell_2) = \psi(\ell_1) + \psi(\ell_2)$ and $\psi(\ell_1\ell_2) = \psi(\ell_1)\ell_2 + \ell_1\psi(\ell_2)$ for all $\ell_1, \ell_2 \in \Re$, for any fixed element $b \in \mathfrak{R}$, a mapping ψ on \mathfrak{R} defined by $\psi(\ell_1) = [b, \ell_1] = b\ell_1 - \ell_1 b$ for all $\ell_1 \in \mathfrak{R}$ is called a inner derivation induced by b. An additive mapping D : $\Re \to \Re$ is called a generalized derivation on \Re if there exists a derivation ψ on \Re such that $D(\ell_1\ell_2) = D(\ell_1)\ell_2 + \ell_1\psi(\ell_2)$ for all $\ell_1,\ell_2 \in \Re$. A map $f: \mathfrak{R} \to \mathfrak{R}$ is called centralizing on \mathfrak{R} if $[f(\ell_1), \ell_1] \in \vartheta_Z$ holds for all $\ell_1 \in \mathfrak{R}$. In particular, if $[f(\ell_1), \ell_1] = 0$ holds for all $\ell_1 \in \mathfrak{R}$, then it is called commuting. The history of centralizing and commuting maps began in 1955, when Divinsky established that a simple Artinian ring is commutative if it has a commuting non-trivial automorphisms. Motivated by the representation of a centralizing map, a map f from \Re into itself is called η centralizing if $[f(\ell_1), \eta(\ell_1)] \in \vartheta_Z$ for all $\ell_1 \in \Re$ and is called η -commuting if $[f(\ell_1), \eta(\ell_1)] = 0$ for all $\ell_1 \in \mathfrak{R}$. Several years later, Posner [17], the presence of a nonzero centralizing derivation on a prime ring guarantees ring commutativity. The study of centralizing (resp. commuting) derivations and various generalizations of the idea of a centralizing (resp. commuting) map are the key topics that emerge immediately from Posner's result, with numerous applications in diverse fields. The commutativity theorem for prime and semi-prime rings with or without involution was recently proved by a number of algebraists, who accepted identities on automorphism, derivations, left centralizers, and generalized derivations, for example, see [2, 4, 7, 11, 12, 13].

In 2016, Ali et al. [2] examine a η -centralizing derivation in prime rings with involution and showed the η -version of standard results of Posner [17], and they proved that "If \mathfrak{R} be a prime ring with involution η such that $\operatorname{char}(\mathfrak{R}) \neq 2$. If ψ is a nonzero derivation of \mathfrak{R} such that $[\psi(\ell_1), \eta(\ell_1)] \in \vartheta_Z$ for all $\ell_1 \in \mathfrak{R}$ and $\psi(\vartheta_S \cap \vartheta_Z) \neq \{0\}$, then \mathfrak{R} is commutative". Further, this result was extended by Nejjar et al. [14] for the second kind involution instead of condition $\psi(\vartheta_S \cap \vartheta_Z) \neq \{0\}$. Recently, Alahmadi et al. [4] generalized the above result for generalized derivation and they proved that "If \mathfrak{R} is a prime ring with involution η of the second kind such that $\operatorname{char}(\mathfrak{R}) \neq 2$ and if \mathfrak{R} admits a nonzero generalized derivation F associated with a derivation f such that f and f and f are f and f and f are f and f and f are f are f and f are f are f and f are f and f are f and f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f and f are f are f are f and f are f and f are f are f and f are f and f are f and f are f and f are f are f and f are f and f are f are f and f are f and f are f are f

Our paper's the main goal is to look into a generalized derivations involving skew Lie product on η -prime rings with involution. Further, we identify the structure of η -prime rings that satisfy some identities. In fact our results are generalization of some results proved in [3] where authors proved their main result as: "If \Re is a 2-torsion free prime ring with involution * of second kind and admits a generalized derivation (\mathfrak{F},d) such that $\nabla[x,\mathfrak{F}(x^*)] \pm \nabla[x,x^*] \in Z(\mathfrak{R})$ for all $x \in \mathfrak{R}$, then \mathfrak{R} is commutative or $\mathfrak{F} = \pm I_{\mathfrak{R}}$, where $I_{\mathfrak{R}}$ is the identity mapping on \mathfrak{R} ". At the last we provide some examples to demonstrate that the conditions assumed in our results are not unnecessary.

2. MAIN RESULTS

Lemma 2.1. Let \Re be a η -prime ring with involution η . If $az \in \vartheta_Z$ and $a\eta(z) \in \vartheta_Z$ ehere $a \in \Re$ and $z \in \vartheta_Z$, then $a \in \vartheta_Z$ or z = 0.

Proof. Since, $az \in \vartheta_Z$ and $a\eta(z) \in \vartheta_Z$, $0 = [az, r] = [a\eta(z), r]$ for all $r \in \mathfrak{R}$, implies $0 = z[a, r] = \eta(z)[a, r]$. Further implies $(0) = z\mathfrak{R}[a, r] = \eta(z)\mathfrak{R}[a, r]$, by the definition of η -prime ring, we have either z = 0 or $a \in \vartheta_Z$.

Lemma 2.2. Let \Re be a η -prime ring with involution η . If $az \in \vartheta_Z$ and $\eta(a)z \in \vartheta_Z$ for any $a \in \Re$ and $z \in \vartheta_Z$, then $a \in \vartheta_Z$ or z = 0.

Proof. Since, $az \in \vartheta_Z$ and $\eta(a)z \in \vartheta_Z$, $0 = [az, r] = [\eta(a)z, r]$ for all $r \in \mathfrak{R}$, implies $0 = z[a, r] = z[\eta(a), r]$ implies $(0) = z\mathfrak{R}[a, r] = z\mathfrak{R}[\eta(a), r]$. Further implies $(0) = z\mathfrak{R}[a, r] = z\mathfrak{R}\eta([a, r])$, by the definition of η -prime ring, we have either z = 0 or $a \in \vartheta_Z$.

Lemma 2.3. [9, Lemma 2.3], Let \Re be a η -prime ring of char(\Re) \neq 2. Then \Re is 2-torsion free.

Although it is commonly known that the zero-divisor cannot exist in the centre of a prime ring, but the center of η -prime rings is not devoid of the zero-divisor. The following example demonstrates the aforementioned fact.

Example 2.4. Consider $\mathfrak{R} = \left\{ \begin{bmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{bmatrix} \middle| \alpha_1, \alpha_2 \in \mathbb{Z} \right\}$, define η in such a way $\eta \left(\begin{bmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{bmatrix} \right) = \begin{bmatrix} \alpha_2 & 0 \\ 0 & \alpha_1 \end{bmatrix}$. It is easy to verify that \mathfrak{R} is η -prime

ring with involution η . For any non-zero α_1 , $\begin{bmatrix} \alpha_1 & 0 \\ 0 & 0 \end{bmatrix} \in \vartheta_Z$, and for any non-zero α_2 , $\begin{bmatrix} 0 & 0 \\ 0 & \alpha_2 \end{bmatrix} \in \mathfrak{R}$ and $\begin{bmatrix} \alpha_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & \alpha_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

Lemma 2.5. [9, Lemma 2.4], In η -prime ring, $\vartheta_Z \cap \vartheta_H$ and $\vartheta_Z \cap \vartheta_S$ are free from zero-divisors.

Lemma 2.6. Let \Re be a 2-torsion free η -prime ring with involution η which is of the second kind. Let ψ be a derivation on \Re . If $\psi(h) = 0$ for all $h \in \vartheta_H \cap \vartheta_Z$, then $\psi(z) = 0$ for all $z \in \vartheta_Z$.

Proof. By our hypothesis, we have $\psi(h)=0$, where $h\in \vartheta_H\cap \vartheta_Z$, then $\psi(k^2)=0$ for $k\in \vartheta_S\cap \vartheta_Z$ implies k $\psi(k)=0$ by Lemma 2.5 we have either k=0 or $\psi(k)=0$; the first case is not possible because η is of the second kind involution. So, we have $\psi(k)=0$ for $k\in \vartheta_S\cap \vartheta_Z$. For all $z\in \vartheta_Z$ we have for 2-torsion free rings 2z=h+k. Finally, we have $\psi(2z)=\psi(h)+\psi(k)=0$ implies $\psi(z)=0$ for all $z\in \vartheta_Z$.

Fact 2.7. Let \Re be a 2-torsion free η -prime ring with involution η which is of the second kind. If $\nabla[\ell_1, \eta(\ell_1)] \in \vartheta_Z$ for all $\ell_1 \in \Re$, then \Re is commutative.

Proof. By the given condition

(1)
$$\nabla [\ell_1, \eta(\ell_1)] \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

Linearizing the above equation, we have

(2)
$$\nabla [\ell_1, \eta(\ell_2)] + \nabla [\ell_2, \eta(\ell_1)] \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Taking $\ell_2 k$ in place of ℓ_2 , where $k \in \vartheta_Z \cap \vartheta_S$ in the above relation and using Lemma 2.5, we obtain

(3)
$$(-\nabla [\ell_1, \eta(\ell_2)] + l_2 \eta(\ell_1) + \eta(\ell_1) \eta(\ell_2)) \ k \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \Re.$$

The last relation further implies

(4)
$$[-\nabla [\ell_1, \eta(\ell_2)] + \ell_2 \eta(\ell_1) + \eta(\ell_1) \eta(\ell_2), \ r] \ k = 0 \text{ for all } \ell_1, \ell_2, r \in \mathfrak{R}.$$

By Lemma 2.5, we get k=0 or $[-\nabla [\ell_1, \eta(\ell_2)] + l_2\eta(\ell_1) + \eta(\ell_1)\eta(\ell_2), r] = 0$ for all $\ell_1, \ell_2, r \in \mathfrak{R}$. The first case is not possible because η is of the second kind involution. The later case implies

(5)
$$(-\nabla [\ell_1, \eta(\ell_2)] + l_2 \eta(\ell_1) + \eta(\ell_1) \eta(\ell_2)) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

By using (2) and (5), we have

(6)
$$2\ell_2\eta(\ell_1) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Since \Re is 2-torsion free, we get

(7)
$$\ell_2 \eta(\ell_1) \in \vartheta_Z.$$

Replacing $\eta(\ell_1)$ by ℓ_1 and ℓ_2 by k, where $0 \neq k \in \vartheta_Z \cap \vartheta_S$, we have

(8)
$$\ell_1 k \in \vartheta_Z \text{ and } \ell_1 \eta(k) \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

By Lemma 2.1, we have

(9)
$$\ell_1 \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

The last relation implies commutativity of \Re .

Fact 2.8. [9, Fact 2.2], Let \Re be a 2-torsion free η -prime rings with involution η which is of the second kind. If η is centralizing, then \Re is commutative.

Fact 2.9. [9, Fact 2.3], Let \mathfrak{R} be a 2-torsion free η -prime ring with involution η which is of the second kind. If $\ell_1 \circ \eta(\ell_1) \in \vartheta_Z$ for all $\ell_1 \in \mathfrak{R}$, then \mathfrak{R} is commutative.

Fact 2.10. Let \Re be a 2-torsion free η -prime ring with involution η which is of the second kind and D be a generalized derivation associated with a derivation ψ on \Re . If $D(\ell_1) \in \vartheta_Z$ for all $\ell_1 \in \Re$, then either \Re is commutative or D = 0.

Proof. By the given condition

(10)
$$D(\ell_1) \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

Let us consider $\vartheta_Z \neq 0$. Taking $\ell_2 \ell_1$ in place of ℓ_1

(11)
$$D(\ell_2\ell_1) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Commutes the above relation with ℓ_1 , we obtain

(12)
$$[\ell_2 \psi(\ell_1), \ell_1] = 0 \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Replacing ℓ_2 by $(0 \neq z) \in \vartheta_Z$, we obtain

(13)
$$z[\psi(\ell_1), \ell_1] = 0 \text{ for all } \ell_1 \in \mathfrak{R}.$$

From the last relation, we have

(14)
$$z\Re[\psi(\ell_1), \ell_1] = (0) = \eta(z)\Re[\psi(\ell_1), \ell_1] \text{ for all } \ell_1 \in \Re.$$

By the definition of η -prime ring, we have either z=0 or $[\psi(\ell_1),\ell_1]=0$, the first case is not possible by our assumption, the later case implies

(15)
$$[\psi(\ell_1), \ell_1] = 0 \text{ for all } \ell_1 \in \mathfrak{R}.$$

By [15, Theorem 1], \mathfrak{R} is commutative or $\psi = 0$. Replacing ℓ_1 by $\ell_1 u$, where $u \in \mathfrak{R}$ in (10) and using $\psi = 0$, we obtain

(16)
$$D(\ell_1)u \in \vartheta_Z \text{ for all } \ell_1, u \in \mathfrak{R}.$$

The last relation further gives

(17)
$$D(\ell_1)\eta(u) \in \vartheta_Z \text{ for all } \ell_1, u \in \mathfrak{R}.$$

The last relation together with (16) and using Lemma 2.2, we obtain

(18) either
$$D(\ell_1) = 0$$
 for all $\ell_1 \in \mathfrak{R}$, or $u \in \vartheta_Z$ for all $u \in \mathfrak{R}$.

The later case implies commutativity of \Re and the first case implies D=0.

Theorem 2.11. Let \mathfrak{R} be a 2-torsion free η -prime ring with involution η which is of the second kind and D be a generalized derivation associated with a derivation ψ on \mathfrak{R} satisfying $\nabla[\ell_1, D(\eta(\ell_1))] \pm \nabla[\ell_1, \eta(\ell_1)] \in \vartheta_Z$ for all $\ell_1 \in \mathfrak{R}$ then \mathfrak{R} is commutative or $D = \pm I_{\mathfrak{R}}$, where $I_{\mathfrak{R}}$ is the identity mapping on \mathfrak{R} .

Proof. Given that

(19)
$$\nabla[\ell_1, D(\eta(\ell_1))] + \nabla[\ell_1, \eta(\ell_1)] \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

If D=0, then $\nabla[\ell_1,\eta(\ell_1)]\in\vartheta_Z$ for all $\ell_1\in\mathfrak{R}$, so by Fact 2.7, \mathfrak{R} is commutative. Now, for the case $D\neq 0$, replacing ℓ_1 by $\ell_1+\ell_2$ in (19), we have

(20)
$$\nabla[\ell_1, D(\eta(\ell_2))] + \nabla[\ell_2, D(\eta(\ell_1))] + \nabla[\ell_1, \eta(\ell_2)] + \nabla[\ell_2, \eta(\ell_1)] \in \vartheta_Z$$
.

For all $\ell_1, \ell_2 \in \mathfrak{R}$, the last relation further implies

$$\ell_1 D(\eta(\ell_2)) - D(\eta(\ell_2)\eta(\ell_1)) + \ell_2 D(\eta(\ell_1)) - D(\eta(\ell_1)\eta(\ell_2)) + \ell_1 \eta(\ell_2)$$

(21)
$$-\eta(\ell_2)\eta(\ell_1) + \ell_2\eta(\ell_1) - \eta(\ell_1)\eta(\ell_2) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \Re.$$

Replacing ℓ_1 by $\ell_1 h$, where $h \in \vartheta_H \cap \vartheta_Z$ in the above relation and using it, we obtain

(22)
$$(\ell_2 \eta(\ell_1) - \eta(\ell_1) \eta(\ell_2)) \psi(h) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Replacing ℓ_1 by $\eta(\ell_1)$ in the last relation, we get

(23)
$$\eta(\ell_2\eta(\ell_1) - \eta(\ell_1)\eta(\ell_2))\psi(h) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Combining (22), (23) and using Lemma 2.1, we obtain $(\ell_2\eta(\ell_1)-\eta(\ell_1)\eta(\ell_2)) \in \vartheta_Z$ for all $\ell_1,\ell_2 \in \Re$ or $\psi(h)=0$ for all $h \in \vartheta_H \cap \vartheta_Z$. The first case implies commutativity of \Re by Fact 2.7. The later case by Lemma 2.6 implies $\psi(z)=0$ for all $z \in \vartheta_Z$. Replacing ℓ_1 by $\ell_1 s$ in (21), where $s \in \vartheta_S \cap \vartheta_Z$, we obtain and using $\psi(z)=0$ for all $z \in \vartheta_Z$

$$(\ell_1 D(\eta(\ell_2)) + D(\eta(\ell_2))\eta(\ell_1) - \ell_2 D(\eta(\ell_1)) + D(\eta(\ell_1))\ell_2 + \ell_1 \eta(\ell_2) +$$

(24)
$$\eta(\ell_2)\eta(\ell_1) - \ell_2\eta(\ell_1) + \eta(\ell_1)\eta(\ell_2) s \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

By using Lemma 2.5, we obtain

$$(\ell_1 D(\eta(\ell_2)) + D(\eta(\ell_2))\eta(\ell_1) - \ell_2 D(\eta(\ell_1)) + D(\eta(\ell_1))\ell_2 + \ell_1 \eta(\ell_2) + \ell_2 D(\eta(\ell_1)) + D(\eta(\ell_2)) + \ell_2 D(\eta(\ell_1)) + D(\eta(\ell_2)) + \ell_1 D(\eta(\ell_2)) + \ell_2 D(\eta(\ell_1)) + \ell_2 D$$

(25)
$$\eta(\ell_2)\eta(\ell_1) - \ell_2\eta(\ell_1) + \eta(\ell_1)\eta(\ell_2) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

The last relation together with (21), we obtain

(26)
$$\ell_1 D(\eta(\ell_2)) + \ell_1 \eta(\ell_2) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Replacing ℓ_1 by h and ℓ_2 by $\eta(\ell_2)$ where $h \in \vartheta_H \cap \vartheta_Z$ and using Lemma 2.5, we obtain

(27)
$$D(\ell_2) + \ell_2 \in \vartheta_Z \text{ for all } \ell_2 \in \mathfrak{R}.$$

The last relation further gives

(28)
$$(D + I_{\mathfrak{R}})(\ell_2) \in \vartheta_Z \text{ for all } \ell_2 \in \mathfrak{R}.$$

Here, $I_{\mathfrak{R}}$ represent the identity mapping on \mathfrak{R} and $D + I_{\mathfrak{R}}$ is a generalized derivation associated with a derivation ψ , by Fact 2.10, we have either \mathfrak{R} is commutative or $D = -I_{\mathfrak{R}}$. When we take $\nabla[\ell_1, D(\eta(\ell_1))] - \nabla[\ell_1, \eta(\ell_1)] \in \vartheta_Z$ for all $\ell_1 \in \mathfrak{R}$, then by same process we obtain the required result.

Corollary 2.12. [3, Theorem 4], Let \Re be a 2-torsion free prime ring with involution η which is of the second kind and D be a generalized derivation associated with a derivation ψ on \Re satisfying $\nabla[\ell_1, D(\eta(\ell_1))] \pm \nabla[\ell_1, \eta(\ell_1)] \in \vartheta_Z$ for all $\ell_1 \in \Re$ then \Re is commutative or $D = \pm I_{\Re}$, where I_{\Re} is the identity mapping on \Re .

Theorem 2.13. Let \mathfrak{R} be a 2-torsion free η -prime ring with involution η which is of the second kind and D be a generalized derivation associated with a derivation ψ on \mathfrak{R} satisfying $\nabla[\ell_1, D(\ell_1)] + \nabla[\ell_1, \eta(\ell_1)] \in \vartheta_Z$ for all $\ell_1 \in \mathfrak{R}$, then \mathfrak{R} is commutative.

Proof. Given that

(29)
$$\nabla[\ell_1, D(\ell_1)] + \nabla[\ell_1, \eta(\ell_1)] \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

The last relation further implies that

(30)
$$\ell_1 D(\ell_1) - D(\ell_1) \eta(\ell_1) + \ell_1 \eta(\ell_1) - \eta(\ell_1)^2 \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

Replacing ℓ_1 by $\ell_1 h$ in the above relation and using it, where $h \in \vartheta_H \cap \vartheta_Z$, we obtain

(31)
$$(\ell_1^2 - \ell_1 \eta(\ell_1)) \psi(h) \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

Replacing ℓ_1 by $\ell_1 s$ in the above relation, where $s \in \vartheta_S \cap \vartheta_Z$ and using Lemma 2.1, we obtain

(32)
$$(\ell_1^2 + \ell_1 \eta(\ell_1)) \psi(h) \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

Combining (32) and (31), we have

(33)
$$\ell_1 \eta(\ell_1) \psi(h) \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

The last relation further implies

(34)
$$\eta(\ell_1 \eta(\ell_1)) \psi(h) \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

The last relation together with (33) and by Lemma 2.2, we obtain either $\ell_1 \eta(\ell_1) \in \vartheta_Z$ or $\psi(h) = 0$, the first case further implies $\ell_1 \circ \eta(\ell_1) \in \vartheta_Z$, so by Fact 2.9, \Re is commutative. The later case implies $\psi(z) = 0$ for all $z \in \vartheta_Z$.

Replacing ℓ_1 by $\ell_1 s$ in (30), where $s \in \vartheta_S \cap \vartheta_Z$ and using Lemma 2.1, we obtain

(35)
$$\ell_1 D(\ell_1) + D(\ell_1) \eta(\ell_1) - \ell_1 \eta(\ell_1) - \eta(\ell_1)^2 \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

Combining (30) and (35), we obtain

(36)
$$\ell_1 D(\ell_1) - \eta(\ell_1)^2 \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

Replacing ℓ_1 by $\ell_1 + \ell_2$, in the above equation we obtain

(37)
$$\ell_1 D(\ell_2) + \ell_2 D(\ell_1) - \eta(\ell_1) \eta(\ell_2) - \eta(\ell_2) \eta(\ell_1) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Replacing ℓ_1 by $\ell_1 s$, in the above equation, where $0 \neq s \in \vartheta_Z \cap \vartheta_S$ and using $\psi(z) = 0$ for all $z \in \vartheta_Z$, we obtain

(38)
$$(\ell_1 D(\ell_2) + \ell_2 D(\ell_1) + \eta(\ell_1) \eta(\ell_2) + \eta(\ell_2) \eta(\ell_1)) s \in \vartheta_Z$$
 for all $\ell_1, \ell_2 \in \mathfrak{R}$.

By Lemma 2.5, we obtain

(39)
$$\ell_1 D(\ell_2) + \ell_2 D(\ell_1) + \eta(\ell_1) \eta(\ell_2) + \eta(\ell_2) \eta(\ell_1) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Combining (39) and (37), we obtain

(40)
$$\eta(\ell_1)\eta(\ell_2) + \eta(\ell_2)\eta(\ell_1) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

In particular, we obtain $\ell_1 \circ \eta(\ell_1) \in \vartheta_Z$ for all $\ell_1 \in \vartheta_Z$, so by Fact 2.9, \mathfrak{R} is commutative.

Corollary 2.14. [3, Theorem 5], Let \Re be a 2-torsion free prime ring with involution η which is of the second kind and D be a generalized derivation associated with a derivation ψ on \Re satisfying $\nabla[\ell_1, D(\ell_1)] + \nabla[\ell_1, \eta(\ell_1)] \in \vartheta_Z$ for all $\ell_1 \in \Re$, then \Re is commutative.

Theorem 2.15. Let \Re be a 2-torsion free η -prime ring with involution η which is of the second kind and D be a generalized derivation associated with a derivation ψ on \Re satisfying $\nabla[\ell_1, D(\ell_1)] + [\ell_1, \eta(\ell_1)] \in \vartheta_Z$ for all $\ell_1 \in \Re$, then \Re is commutative.

Proof. Given that

(41)
$$\nabla[\ell_1, D(\ell_1)] + [\ell_1, \eta(\ell_1)] \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

Replacing ℓ_1 by $\ell_1 + \ell_2$, in the above relation, we obtain

(42)
$$\nabla[\ell_1, D(\ell_2)] + \nabla[\ell_2, D(\ell_1)] + [\ell_1, \eta(\ell_2)] + [\ell_2, \eta(\ell_1)] \in \vartheta_Z.$$

For all $\ell_1, \ell_2 \in \mathfrak{R}$, the last relation further implies

$$\ell_1 D(\ell_2) - D(\ell_2) \eta(\ell_1) + \ell_2 D(\ell_1) - D(\ell_1) \eta(\ell_2) + \ell_1 \eta(\ell_2)$$

$$(43) \qquad +\ell_2\eta(\ell_1) - \eta(\ell_1)\ell_2 - \eta(\ell_2)\ell_1 \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Replacing ℓ_1 by $\ell_1 h$ in (43) and using it, where $0 \neq h \in \vartheta_H \cap \vartheta_Z$, we obtain

$$(44) (\ell_2\ell_1 - \ell_1\eta(\ell_2))\psi(h) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Replacing ℓ_1 by $\eta(\ell_1)$, in Equation (44), we get

(45)
$$\eta(\ell_2\ell_1 - \ell_1\eta(\ell_2))\psi(h) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Combining (44) and (45) and then using Lemma 2.2, we obtain either $\ell_2\ell_1 - \ell_1\eta(\ell_2) \in \vartheta_Z$ or $\psi(h) = 0$ for all $0 \neq h \in \vartheta_H \cap \vartheta_Z$. The first case implies $\nabla[\ell_1, \eta(\ell_1)] \in \vartheta_Z$, so by Fact 2.7, \mathfrak{R} is commutative, the later case implies

 $\psi(z) = 0$ for all $z \in \vartheta_Z$, replacing ℓ_1 by $\ell_1 s$ in (43), where $0 \neq s \in \vartheta_S \cap \vartheta_Z$ and using Lemma 2.5, we obtain

$$\ell_1 D(\ell_2) + D(\ell_2) \eta(\ell_1) + \ell_2 D(\ell_1) - D(\ell_1) \eta(\ell_2) + \ell_1 \eta(\ell_2)$$

(46)
$$-\ell_2 \eta(\ell_1) + \eta(\ell_1)\ell_2 - \eta(\ell_2)\ell_1 \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Combining (43) and (46), we obtain

(47)
$$D(\ell_2)\eta(\ell_1) - \ell_2\eta(\ell_1) + \eta(\ell_1)\ell_2 \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Replacing ℓ_1 by h in the last equation where $0 \neq h \in \vartheta_H \cap \vartheta_Z$, we obtain

(48)
$$D(\ell_2)h \in \vartheta_Z \text{ for all } \ell_2 \in \mathfrak{R}.$$

By Lemma 2.5, we obtain

(49)
$$D(\ell_2) \in \vartheta_Z \text{ for all } \ell_2 \in \mathfrak{R}.$$

By Fact 2.10, we have either \mathfrak{R} is commutative or D=0, the later case from (41), we obtain $[\ell_1, \eta(\ell_1)] \in \vartheta_Z$ for all $\ell_1 \in \mathfrak{R}$, so by Fact 2.8, \mathfrak{R} is commutative.

Corollary 2.16. [3, Theorem 6], Let \Re be a 2-torsion free prime ring with involution η which is of the second kind and D be a generalized derivation associated with a derivation ψ on \Re , if $\nabla[\ell_1, D(\ell_1)] + [\ell_1, \eta(\ell_1)] \in \vartheta_Z$ for all $\ell_1 \in \Re$, then \Re is commutative.

Theorem 2.17. Let \mathfrak{R} be a 2-torsion free η -prime ring with involution η which is of the second kind and D be a generalized derivation associated with a derivation ψ on \mathfrak{R} , if $\nabla[\ell_1, D(\eta(\ell_1))] \pm \ell_1 \circ \eta(\ell_1) \in \vartheta_Z$ for all $\ell_1 \in \mathfrak{R}$, then \mathfrak{R} is commutative.

Proof. Given that

(50)
$$\nabla[\ell_1, D(\eta(\ell_1))] + \ell_1 \circ \eta(\ell_1) \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

If D = 0, then \mathfrak{R} is commutative by Fact 2.9. If $D \neq 0$, then by linearization of the last relation implies

(51)
$$\nabla[\ell_1, D(\eta(\ell_2))] + \nabla[\ell_2, D(\eta(\ell_1))] + \ell_1 \circ \eta(\ell_2) + \ell_2 \circ \eta(\ell_1) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

The last relation further implies

$$\ell_1 D(\eta(\ell_2)) - D(\eta(\ell_2))\eta(\ell_1) + \ell_2 D(\eta(\ell_1)) - D(\eta(\ell_1))\eta(\ell_2)$$

(52)
$$+\ell_1 \circ \eta(\ell_2) + \ell_2 \circ \eta(\ell_1) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Replacing ℓ_1 by $\ell_1 h$ in (52) and using it, where $0 \neq h \in \vartheta_H \cap \vartheta_Z$, we obtain

(53)
$$\{\ell_2 \eta(\ell_1) - \eta(\ell_1) \eta(\ell_2)\} \psi(h) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Now, the above relation is same as in (22), we get \mathfrak{R} is commutative or $\psi(z) = 0$ for all $z \in \vartheta_Z$. The later case implies, replacing ℓ_1 by $\ell_1 s$ in (52), where $0 \neq s \in \vartheta_S \cap \vartheta_Z$, we obtain

$$\{\ell_1 D(\eta(\ell_2)) + D(\eta(\ell_2))\eta(\ell_1) - \ell_2 D(\eta(\ell_1)) + D(\eta(\ell_1))\eta(\ell_2) + \ell_1 \circ \eta(\ell_2) - \ell_2 \circ \eta(\ell_1)\} s \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \Re.$$

By using Lemma 2.5, we obtain

$$\ell_1 D(\eta(\ell_2)) + D(\eta(\ell_2))\eta(\ell_1) - \ell_2 D(\eta(\ell_1)) + D(\eta(\ell_1))\eta(\ell_2)$$

(55)
$$+\ell_1 \circ \eta(\ell_2) - \ell_2 \circ \eta(\ell_1) \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

The last relation together with (52), implies

(56)
$$\ell_1 D(\eta(\ell_2)) + \ell_1 \eta(\ell_2) + \eta(\ell_2) \ell_1 \in \vartheta_Z \text{ for all } \ell_1, \ell_2 \in \mathfrak{R}.$$

Replacing ℓ_1 by h and ℓ_2 by $\eta(\ell_2)$ in the above relation where $0 \neq h \in \vartheta_H \cap \vartheta_Z$, we obtain

(57)
$$D(\ell_2) + 2\ell_2 \in \vartheta_Z \text{ for all } \ell_2 \in \mathfrak{R}.$$

The last relation further implies

(58)
$$(D + 2I_{\Re})(\ell_2) \in \vartheta_Z \text{ for all } \ell_2 \in \Re.$$

By Fact 2.10, we have either \mathfrak{R} is commutative or $D = -2I_{\mathfrak{R}}$ the later case together with (50), we obtain

(59)
$$\nabla[\ell_1, -2\eta(\ell_1)] + \ell_1 \circ \eta(\ell_1) \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

The last relation further implies

(60)
$$2(\eta(\ell_1)^2 - [\ell_1, \eta(\ell_1)] \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

Replacing ℓ_1 by $\ell_1 s$ in the above relation where $0 \neq s \in \vartheta_S \cap \vartheta_Z$, we obtain

(61)
$$2(\eta(\ell_1)^2 + [\ell_1, \eta(\ell_1)])s^2 \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

By Lemma 2.5, we obtain

(62)
$$2(\eta(\ell_1)^2 + [\ell_1, \eta(\ell_1)]) \in \vartheta_Z \text{ for all } \ell_1 \in \mathfrak{R}.$$

Combining (62) and (60), we obtain $[\ell_1, \eta(\ell_1)] \in \vartheta_Z$ for all $\ell_1 \in \mathfrak{R}$, Fact 2.8, implies commutativity of \mathfrak{R} . Now, we have $\nabla[\ell_1, D(\eta(\ell_1))] - \ell_1 \circ \eta(\ell_1) \in \vartheta_Z$ for all $\ell_1 \in \mathfrak{R}$, so by the same process \mathfrak{R} is commutative.

Corollary 2.18. [3, Theorem 7], Let \mathfrak{R} be a 2-torsion free prime ring with involution η which is of the second kind and D be a generalized derivation associated with a derivation ψ on \mathfrak{R} , if $\nabla[\ell_1, D(\eta(\ell_1))] \pm \ell_1 \circ \eta(\ell_1) \in \vartheta_Z$ for all $\ell_1 \in \mathfrak{R}$, then \mathfrak{R} is commutative.

The following example shows that the second kind is necessary in Theorems 2.15 and 2.17.

Example 2.19. Consider $\mathfrak{R} = \left\{ \begin{bmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{bmatrix} \middle| \alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{Z} \right\}$, define η in such a way $\eta \left(\begin{bmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{bmatrix} \right) = \begin{bmatrix} \alpha_4 & -\alpha_2 \\ -\alpha_3 & \alpha_1 \end{bmatrix}$. It is easy to verify that \mathfrak{R} is η -prime ring with involution η which is of the first kind. Moreover, we define a generalized derivation D and a derivation ψ as $D \left(\begin{bmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_4 \end{bmatrix} \right) = \begin{bmatrix} 0 & -\alpha_2 \\ \alpha_3 & 0 \end{bmatrix}$ and $\psi = D$, here D is a generalized derivation associated with a derivation ψ satisfy the condition of Theorem 2.15 and 2.17, however \mathfrak{R} is non-commutative.

References

- S. Ali and A. Abbasi: On *-differential identities equipped with skew Lie product, Mathematics Today, 36(2) (2020), 29-34
- [2] S. Ali and N. A. Dar: On *-centralizing mappings in rings with involution, Georgian Math. J. 1 (2014), 25-28.
- [3] S. Ali, M. S. Khan, and M. Ayedh: On central identities equipped with skew Lie product involving generalized derivation, King Saud University Science Math. J. 34 (2022), 101860.
- [4] A. Alahmadi, H. Alhazmi, S. Ali, and A. N. Khan: Additive maps on prime and semiprime rings with involution, Hacet. J. Math. Stat. 49 (3) (2020), 1126-1133.
- [5] A. Abbasi, M. R. Mozumder, and N. A. Dar: A note on skew Lie product of prime rings with involution, Miskolc Math. Notes, 21 (1) (2020), 3-18.
- [6] S. Ali, M. R. Mozumder, M. S. Khan, and A. Abbasi: On n-skew Lie products on prime rings with involution, Kyungpook Math. J. 62 (2022), 43-55.
- [7] M. N. Daif: Commutativity results for semiprime rings with derivation, Int. J. Math. Math. Sci. 21(3) (1998), 471-474.
- [8] I. N. Herstein: Rings with Involution, University of Chicago Press, Chicago, 1976.
- [9] A. Madni, M. R. Mozumder, W. Ahmed, A. Abbasi and A. Ramesh: Note on differential identities on *-prime rings with involution, Mathematics Open, (2) (2023), 2350005.
- [10] M. R. Mozumder, A. Abbasi, A. Madni, and W. Ahmed: On *-ideals of prime rings with involution involving derivations, Aligarh Bull. Math. 40(2) (2021), 77-93.
- [11] C. Lanski: Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134(2) (1988), 275-297.
- [12] P. H. Lee, and , T. K. Lee: On derivations of prime rings, Chines J. Math. 9(2) (1981), 107-110.
- [13] J. H. Mayne: Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), 122-126.
- [14] B. Nejjar, A. Kacha, A. Mamouni, and L. Oukhtite: Commutativity theorems in rings with involution, Comm. Algebra, 45(2) (2017), 698-708.
- [15] L. Oukhtite: Posner's second theorem for Jordan ideals in rings with involution, Expositiones J. Math. 29 (2011), 415-419.
- [16] L. Oukhtite, A. Mamouni: Generalized derivations centralizing on Jordan ideals of rings with involution, Turkish J. Math. 38 (2014), 225-232.
- [17] E. C. Posner: Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100.
- [18] X. Qi and Y. Zhang: k-skew Lie product on prime rings with involution, Comm. Algebra, 46(3) (2018), 1001-1010.

DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY E-mail address: arshadmadni7613@gmail.com

DEPARTMENT OF COMMERCE, ALIGARH MUSLIM UNIVERSITY E-mail address: shadabkhan33@gmail.com

DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY E-mail address: muzibamu810gmail.com